Touchscreen Biometrics: Desktop Signature goes Mobile

Prof. Julian Fierrez

http://atvs.ii.uam.es/fierrez

BiDA Lab - Biometrics and Data Pattern Analytics
Universidad Autonoma de Madrid (UAM), SPAIN

Signature Biometrics: From Lab to Market

Research at UAM 2002...

On-line Writer/Signature Verification

Feature-based (Global Features)
- Distance-based classifiers
 - Mahalanobis
 - Euclidean [Nelson et al., 1994]
- Statistical/other classifiers
 - Gaussian Mixture Models (GMM)
 - Parzen Windows

Function-based (Local Features)
- Time-Sequence matching techniques
 - Hidden Markov Models (HMM) [Dolfing et al., 1998]
 - Gaussian Mixture Models (GMM) [Richiardi et al., 2005]
 - Dynamic Time Warping (DTW) [Sato and Kogure, 1982]

Feature Extraction: Global Features Example

Similarity Computation

- **Dynamic Time Warping (DTW)**
- **Hidden Markov Models (HMM)**

Statistical modeling of signature regions

Point-to-point correspondence

Resources: Multimodal Databases w Signature

- **MCYT Database** (Spanish Project 2000-2003)
 - Fingerprint (with human-labeled quality) and on-line Signature of 330 donors

- **BiosecurID Database** (Spanish Project 2003-2006)
 - 8 Modalities: speech, iris, face, Signature and handwriting (on-line and off-line), fingerprints, hand and keystroking of 400 donors in 4 acquisition sessions

- **Biosecure Database** (EU Project 2004-2007)
 - 3 Datasets: Web scenario, Office scenario, Mobile scenario
 - 667 donors

See: https://atvs.ii.uam.es/atvs/databases.jsp

Benchmarks: SVC 2004

SVC-04 skilled forgeries

SVC-04 random (zero-effort, casual) impostors

BioSec Signature Evaluation Campaign, BSEC 2009

- DTW, HMM and Global Systems
- Score normalization
- Fusion of systems

Signature Biometrics: From Lab to Market

UAM → CECABANK

Research at UAM
2002...

1st Tech. Transfer
2014-2015

• Development and Transfer of signature biometric technology:
 – Cecabank is a Spanish wholesale bank that provides support services to banking business processes (~45% of the Spanish Banking Sector)

Get rid of paper!

9,000 tons of paper = 200,000 trees

➢ Total savings per year:
 Paper elimination
 1,5M euros
 Operative efficiency
 2M euros
 45K hours

Cecabank’s Associates generate 1 billion documents/year
• Development and Transfer of signature biometric technology:
 – Office-like scenarios (Wacom devices)
 – Small number of signatures per user
 – Signature Verification System
 • Main core: Dynamic Time Warping (DTW)

• R&D: device interoperability scenarios
 – e-BioSign database (Wacom and Samsung general purpose devices)
 – Publically available to the research community
 • In use +25 research groups (USA, China, India, Italy, etc.)
 Available at: https://atvs.ii.uam.es/atvs/eBioSign-DS1.html

Julian Fierrez – Biometrics Congress, London, UK, Oct. 17, 2018
Signature Biometrics: From Lab to Market

UAM → CECABANK

Research at UAM
2002...

1st Tech. Transfer
2014-2015

R&D
2015-2016

2nd Tech. Transfer
2016-2017

• R&D: template and system configuration update strategies
 – ATVS Signature Long-Term Extended database (Publically available*)
 – Large number of enrolment signatures per user (46 samples/user)
 – Signature Verification Systems
 • Hidden Markov Models (HMM), Gaussian Mixture Models (GMMs)
 • Dynamic Time Warping (DTW)

Signature Biometrics: From Lab to Market

UAM → CECABANK

1st Tech. Transfer
2014-2015

R&D
2015-2016

2nd Tech. Transfer
2016-2017

• 2nd Technology Transfer: signature biometrics technology
 – ATVS Signature Long-Term Extended database

<table>
<thead>
<tr>
<th>EER (%)</th>
<th>4 signatures</th>
<th>16 signatures</th>
<th>31 signatures</th>
<th>41 signatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forgery</td>
<td>2.8</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Skilled Forgery</td>
<td>11.7</td>
<td>6.9</td>
<td>4.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>
• **R&D:** improving traditional signature verification approaches

 – Recurrent Neural Networks (RNNs) deep learning techniques

 • LSTM, GRU, Siamese architectures, Bidirectional approaches, etc

 • Deployment by Cescabank: marketed as *BIOTRACE100* technology

 BIOTRACE100 technology:

 - > 18K branches
 - > 46K sensors
 - > 500K transactions/year
Desktop Signature > Mobile: Touchscreen Biometrics Motivation

- Users spend more than 2x time on mobile scenarios compared to desktop scenarios

Source: “Mobile Global Report 2018”, May 2018

- “In March 2018, 48% of digital consumers were accessing banking services through smartphones or tablets almost exclusively”

Source: “Online Banking in Europe Report”, June 2018
Desktop Signature > Mobile: Touchscreen Biometrics

Motivation

- User authentication difficult to accomplish using **only** traditional approaches

![Personal Identification Number (PIN)](image1) ![One-Time Password (OTP)](image2)

- **Personal Identification Number (PIN)**
- **One-Time Password (OTP)**

> Related to personal details, typical words or sequential numbers

- Security threats [Bonneau et al., 2012]
Desktop Signature > Mobile: Touchscreen Biometrics

Motivation

• User authentication difficult to accomplish using only traditional approaches

Personal Identification Number (PIN) One-Time Password (OTP)

• Security threats [Bonneau et al., 2012]

Shoulder surfing (visual access to passwords)

Smudge attack (finger grease traces on screen)
Desktop Signature > Mobile: Touchscreen Biometrics

- Password-Based Mobile Authentication Incorporating Handwritten Touch Biometrics

Example Application

- **Two-factor authentication** approach:
 1. Check the password
 2. Check the biometric information

Password

```
5 7 6 1 8
```

• **R&D:** touchscreen biometrics

Signature Biometrics: From Lab to Market

UAM → CECABANK

<table>
<thead>
<tr>
<th>Research at UAM</th>
<th>1st Tech. Transfer</th>
<th>R&D</th>
<th>2nd Tech. Transfer</th>
<th>R&D</th>
<th>R&D</th>
</tr>
</thead>
</table>

Deployment by CECABANK

e-BioDigit Database

- **Acquisition:** one handwritten digit at a time. Only X and Y time information is considered

*Available at: https://atvs.ii.uam.es/atvs/e-BioDigit.html
e-BioDigit Database

- **# Users:** 93
- **Session 1:** 3 weeks
- **Session 2:**

 - 10 numerical digits (0,1,...,9)
 - 4 samples/numerical digit

Available at: https://atvs.li.uam.es/atvs/e-BioDigit.html

System Architecture

- **Two-factor authentication scheme:** OTP system

Comparison with Related Works

<table>
<thead>
<tr>
<th>Work</th>
<th>Method</th>
<th>Verification Performance (EER)</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angulo and Washburn (2011)</td>
<td>Lock Pattern Dynamics</td>
<td>- 10.39% avg.</td>
<td>32</td>
</tr>
</tbody>
</table>

Comparison with Related Works

<table>
<thead>
<tr>
<th>Work</th>
<th>Method</th>
<th>Verification Performance (EER)</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angulo and Wastlund (2011)</td>
<td>Lock Pattern Dynamics</td>
<td>-</td>
<td>10.39% avg.</td>
</tr>
<tr>
<td>Sae et al. (2014)</td>
<td>Touchscreen Gestures</td>
<td>1.58%</td>
<td>-</td>
</tr>
<tr>
<td>Pozo et al. (2017)</td>
<td>Touchscreen Gestures</td>
<td>15.0%</td>
<td>-</td>
</tr>
<tr>
<td>Li et al. (2013)</td>
<td>Touchscreen Gestures</td>
<td>3.0%</td>
<td>-</td>
</tr>
<tr>
<td>Shen et al. (2016)</td>
<td>Touchscreen Gestures</td>
<td>~3.0%</td>
<td>-</td>
</tr>
<tr>
<td>Martinez-Diaz et al. (2016)</td>
<td>Graphical Passwords</td>
<td>3.4%</td>
<td>22.1%</td>
</tr>
</tbody>
</table>

Comparison with Related Works

<table>
<thead>
<tr>
<th>Work</th>
<th>Method</th>
<th>Verification Performance (EER)</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angulo and Wadhun (2011)</td>
<td>Lock Pattern Dynamics</td>
<td>- 10.39% avg.</td>
<td>32</td>
</tr>
<tr>
<td>Sae et al. (2014)</td>
<td>Touchscreen Gestures</td>
<td>1.58%</td>
<td>34</td>
</tr>
<tr>
<td>Pozo et al. (2017)</td>
<td>Touchscreen Gestures</td>
<td>15.0%</td>
<td>190</td>
</tr>
<tr>
<td>Li et al. (2013)</td>
<td>Touchscreen Gestures</td>
<td>3.0%</td>
<td>75</td>
</tr>
<tr>
<td>Shen et al. (2016)</td>
<td>Touchscreen Gestures</td>
<td>~3.0%</td>
<td>71</td>
</tr>
<tr>
<td>Martinez-Diaz et al. (2016)</td>
<td>Graphical Passwords</td>
<td>3.4% 22.1%</td>
<td>100</td>
</tr>
<tr>
<td>Sae and Memon (2014)</td>
<td>Handwritten Signatures</td>
<td>5.04%</td>
<td>180</td>
</tr>
<tr>
<td>Tolosana et al. (2017)</td>
<td>Handwritten Signatures</td>
<td>0.5% 17.9%</td>
<td>65</td>
</tr>
<tr>
<td>Kutzner et al. (2015)</td>
<td>Handwritten Characters</td>
<td>FAR = 10.42% FRR = unknown</td>
<td>32</td>
</tr>
</tbody>
</table>

- Proposed approach **outperforms** other touch biometric approaches for **skilled forgeries**
 - User-friendly interface
 - Small number of enrolment samples

The Future of Touchscreen Biometrics

Julián Fierrez – Biometrics Congress, London, UK, Oct. 17, 2018

Touchscreen Biometrics: Desktop Signature goes Mobile

Prof. Julian Fierrez

http://atvs.ii.uam.es/fierrez

BiDA Lab - Biometrics and Data Pattern Analytics
Universidad Autonoma de Madrid (UAM), SPAIN

Based on PhD material from Dr. Ruben Tolosana